

Welding/Cutting Annual Refresher September Week 2 - Sparks, Slag and Under Control

Sparks, Slag, and Under Control

Cutting operations — whether with oxy-fuel or plasma — are high-energy processes that can generate temperatures exceeding **6,000** °**F**. That's hot enough to slice through steel like butter and turn a stray drop of molten slag into a branding iron.

Sparks can leap more than **35 feet**, bouncing under doors, skipping over barriers, and hunting for anything flammable. Molten slag — or "dross" — doesn't politely cool down when it lands. It can stay well over **2,000** °F for several seconds, easily burning through clothing, leather, and even thick boot leather before you can react. A single drip in the wrong place can ruin more than your day — it can send you straight to the ER. This week's focus is about controlling that raw, unforgiving power, preventing injuries, and protecting both

yourself and your work area.

Did you know? OSHA demands flashback arrestors. Forget them once, and I'll light up your whole rig.

Cutting Methods at a Glance

Oxy-Fuel Cutting – The Dragon's Breath
You light it, and the world changes. Oxygen and fuel

- but you'll feel me forever

gas roar together, turning into a fire that doesn't just melt steel — it devours it. The flame snarls, carving through beams thicker than your arm. But the dragon never sleeps. It lurks in your hoses, waiting for the wrong purge, the missing valve, the one mistake that lets fire crawl backwards and bite you where you thought you were safe.

You'll never see me coming

<u>Plasma Cutting – The Lightning Lance</u>

Where oxy-fuel growls, plasma screams. Electricity and gas fuse into

a blade of lightning, hotter than the sun and faster than thought. It shrieks through steel, spraying molten shrapnel like a storm of sparks. The light is blinding, the noise deafening, and the heat so fierce it feels alive. Plasma doesn't whisper — it howls, and if you stand in its path unguarded, it doesn't miss.

Hazard	How It's Caused	Risk / Example	Controls / Prevention
Flashback	Clogged tips, incorrect lighting, unpurged hoses, missing check valves or flashback arrestors.	Flame races backward into hoses/regulators, causing explosions or cylinder fires.	Purge before lighting, clean tips, install flashback arrestors & check valves (OSHA 1926.350). Never ignore popping sounds.
Sparks & Slag	Sparks travel up to 35 ft, molten dross falls from overhead cutting. Can bounce under doors, through cracks, and into boots or pockets.	Burns to skin/feet, clothing ignition, secondary fires.	Wear FR cotton or leather sleeves/jackets, leather metatarsal boots, fire blankets, and shields for overhead work. Assign trained fire watch (30–60 min).
UV/IR Radiation	Plasma arcs and oxyfuel flames emit intense UV/IR rays, worsened by reflections from shiny steel.	Arc eye (welder's flash), skin burns, cataracts. Bystanders can also be injured.	Helmets with correct shade lens, safety glasses w/ side shields under hood, FR welding screens/curtains (per ANSI Z87.1, at least shade #5 for plasma observation). Cover all skin.

Welding/Cutting Annual Refresher

September Week 2 - Sparks, Slag and Under Control

Fumes

Vaporization of metals/coatings (chromium, zinc, manganese) during cutting. Lack of ventilation in confined

or indoor spaces.

the sound.

Respiratory irritation, metal fume fever, long-term lung damage, cancer (CrVI).

Local exhaust ventilation, fume extractors, or natural airflow. Respirators if limits exceeded. Covered in Week 3.

Noise

Plasma arcs exceed 100–110 dB; compressed air and cutting surfaces amplify Hearing loss, tinnitus, permanent threshold shift. Hearing Conservation Program applies at 85 dBA. Plasma cutting often requires dual protection: high-NRR plugs (up to 33 dB) plus muffs (20–30 dB). Combined = ~38 dB effective reduction. Always measure actual noise levels on site.

Unstable Loads

Steel no longer supported after final cut; stored tension or vibration causes beam/plate/pipe to shift. Crushed limbs, fractures, fatalities from falling sections. Pre-plan drop zones. Use blocking, cribbing, or rigging before finishing cut. Communicate & barricade hazard area.

OSHA Case Study – *Torch Cut, Beam Collapse*Accident Summary #110853.015 — Inspection #1359315.015
Incident Date: November 3, 2018

I don't need heat to hurt you — just patience. You cut away the steel's last defense, and I'll crush whatever stands in my path.

During demolition inside a manufacturing plant, a worker was tasked with cutting a steel support beam with an oxy-fuel torch. The cut severed the beam cleanly, but with no bracing or blocking in place, the structure shifted instantly.

The freed beam collapsed downward, striking the worker across the upper body and face. The force fractured his ribs, cheekbone, and wrist, while also causing a severe facial laceration. He was transported to the hospital for emergency treatment. The injuries were not fatal, but they were catastrophic, and recovery was long and uncertain.

OSHA's Findings

- Lack of support planning: No blocking, cribbing, or rigging was used to stabilize the beam prior to cutting.
- Unsafe positioning: The worker was directly inside the fall zone, with no escape route or barricade.
- No hazard analysis: The employer had not conducted a pre-task hazard assessment specific to cutting and structural stability.
- Standards ignored: Failure to follow 29 CFR 1926 Subpart H (rigging and handling materials).

The Lesson

Cutting is not just about sparks and flame — it's about releasing energy that steel has been carrying for decades. Once a support is gone, gravity takes over. Beams don't simply drop straight down; they can twist, kick, or swing unpredictably. Without bracing, the torch is just the trigger for collapse.