

Before there were wires or walls, there was thunder. Lightning tore across the sky — wild, white, and untouchable. From that chaos the storm found a name: Volt Viper. Electricity is the movement of tiny, charged particles — electrons — pushing and colliding through metal. When they move together, they create

a current powerful enough to spin motors and melt steel.

We thought we could tame him. We coiled his body in copper, boxed his fury in breakers, and called it power. But Volt Viper never sleeps. He waits behind every switch and cord, patient under pressure. Each flipped breaker is a bargain with the storm.

Numbers Behind the Monster

Volt Viper isn't a myth — his record is written in data.

- ♦ About 166 workers die in the U.S. each year from electrical contact.
- More than 2,000 others suffer shocks or burns that alter their lives.
- † Half of those deaths occur below 120 volts ordinary outlets and cords.
- Most begin with damaged cords, missing grounds, or untested tools.

That's why OSHA names Electrocution among its Focus Four Fatal Hazards, beside Falls, Struck-By, and Caught-In/Between. Each can kill, but only Volt Viper is invisible.

Hazard	How Volt Viper Strikes	Keep the Cage Closed
Falls	A shock at height knocks a worker from a ladder or lift.	Inspect cords before climbing; stay 10 ft from lines.
Struck By	An arc flash hurls molten metal or tools like shrapnel.	Stay outside the arc-flash boundary; wear arc-rated PPE.
Caught In/Between	Machines restart after electrical work.	Follow full Lockout/Tagout procedure.
Electrocution	Current finds a shortcut through the body to ground.	Keep cords dry, tools grounded, and GFCIs tested.

Volt Viper isn't a myth — his record is written in data.

Subject: Electrical Foundations – Beware of Volt Viper (week 1)

Case File #81164.015 — The Forgotten Overhead Hazard

(*OSHA Fatality Case #81164.015*)

A foreman raised a 20-foot aluminum ladder to hang a light.

Its tip brushed a 13,200-volt line.

For a split second, the cage cracked open.

Volt Viper found a clear escape route — line \rightarrow ladder \rightarrow man \rightarrow ground.

Thousands of electrons stampeded toward earth, each racing home through the easiest path.

The worker never had a chance; he was simply standing in the doorway as the Viper fled.

When the rush ended, the current vanished back into the soil, quiet as thunder after rain. **OSHA Record:** "Ladder contacted energized line."

What Went Wrong

- No survey of overhead power lines before setup.
- Aluminum ladder chosen instead of a fiberglass non-conductive one.
- No spotter or second worker monitoring clearance.
- Worker positioned directly under energized lines.

Lesson From the Forgotten

- Plan before you climb. Always look up and identify power lines before raising ladders or lifts.
- Choose the right tool. Use fiberglass ladders or insulated lifts when working near potential overhead hazards.
- Measure clearance. Maintain a minimum 10-foot distance from lines under 50 kV even more as voltage increases.
- **Assign a spotter.** One person watches the work; the other watches the sky.

Electricity doesn't forgive small mistakes — it turns them into final ones.

Look up, think through, and cage the storm before it moves.

The Four Wounds of the Viper: When Volt Viper escapes his cage, he doesn't always strike the same way. OSHA identifies four major electrical injuries — and each one tells a different story of how the storm finds its path.

and each one tens a university		
Injury Type	How It Happens	
Burns	The current enters or arcs through the body, heating tissue from the inside out. The wound may look small on the surface but hides deep internal damage. Always treat electrical burns as medical emergencies — do not cool with water or ointment, and keep the victim still until help arrives.	
Electric Shock	The body becomes part of the circuit — the Viper finds a way through you to ground. Can cause muscle lock, respiratory failure, or cardiac arrest.	
Falls	A shock at height triggers instant loss of control — the jolt makes you drop tools or fall from ladders and lifts.	
Electrocution	The fatal strike. When the current that enters the body is strong enough to stop the heart.	

Building the Cage — How Electricity Moves Think of electricity as water trapped in a closed pipe system — invisible, powerful, and always looking for release.

The pressure inside the pipe is voltage (V)
— the push, the potential energy waiting to
move.

The **flow** is **current (I)** — how much charge passes when the valve opens.

The narrowness or friction inside the pipe is resistance (Ω) — what slows the flow and builds pressure.

The **total work being done** — the power of that movement — is **watts (W)**, found by multiplying pressure by flow: $P = V \times I$.

Turn up the pump, and voltage rises. If the pipe is wide and clean, current flows easily and the system stays cool. But if the pipe narrows or kinks, electrons fight through friction. That struggle turns motion into heat — the same warmth you feel rubbing your hands together. When the pressure rises too high, the system can't hold. That's when insulation softens, cords warm, and Volt Viper starts to stir — pressing against the walls of his cage.

A narrowed or damaged 'pipe' makes pressure rise and heat build — the hiss before the strike. A warm cord or burning smell means Volt Viper's grinding at the walls. Stop, inspect, replace.

Conductors — **The Viper's Highway** - Not every material lets Volt Viper move freely. Conductors — like copper, aluminum, water, or even your body — are highways built for his escape. Their atoms hold loose electrons that slide easily from one to the next, creating a fast, low-resistance path.

Insulators — like rubber, plastic, and dry wood — are the opposite: tight-fisted materials that don't let electrons roam. They're the walls of the cage.

Every tool, cord, and glove you use is designed around that difference. Insulation slows the storm; metal speeds it. Forget that — and you open the door.

And sometimes, we wear the door. Rings, watches, necklaces, belt buckles, and even keys in your pocket can become instant conductors if they bridge energized parts or ground.

A gold wedding band can reach 2,000°F in less than a second if current flows through it, welding to skin and causing catastrophic burns. Metal watchbands, chains, or tools resting against live parts can do the same.

Before working near electricity, remove all jewelry. Even 'non-conductive' coated metals can arc if scratched. Bare hands, rolled sleeves, and insulated gloves keep Volt Viper from finding a shortcut through you.

Perhaps the biggest part of being safe around electricity on a construction site boils down to avoidance. Don't attempt any wiring work—leave it to the professionals! When workers do have to interact with electricity in the form of power tools, power cords, and other equipment, they should always take proper precautions, stay away from water, and ensure everything is in good condition.